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Lithio Siloles: Facile Synthesis and Applications
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Functionalized siloles have become ever more attractive in recent Scheme 1

years, since these types of compounds have practical applications SiMes SiMe,
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particularly important, because a wide variety of functionalized 3b: R =Bu fa-c
siloles can be readily synthesized by further applications of 2,5- 3c: R = Hex
dilithio siloles and lithio benzosilole’s? In this Communication, R SiMes SiMes
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unique structures of thus obtained siloles can be further expected.
The reaction mechanism is very intriguing. Given in Scheme 2
are two proposed mechanisms for this useful reaction. First, the
electrocyclic ring-closing of giving 6 is assumed to be a key step
for path &8 It has been well-documented tha®Z(22)-1,4-dilithio-
1,3-butadienes likd generally take the s-cis conformation and a
double-bridged dilithium structur€® which is proposed to be the
crucial factor leading to the unprecedented facile electrocyclic
formation of6.% For path b, the reversion of the stereochemistry at
the terminal carbon bonding with a Li atom and a SiMeoup of
1 forming 8 is assumed to be the essential step. Configurational
E/Z isomerization of 1-(trimethylsilyl)-1-alkenyllithium compounds
has been reported in the literat@®. Then, an intramolecular
anionic attack on the adjacent Sipgroup followed by release of
MeLi might result in the formation of 2-lithiosilole.1* When the
reaction was carried out without HMPA, no formation dfvas

1,4-Bis(trimethylsilyl)-2,3-diphenyl-1,4-dilithio-1,3-dieriea (1
mmol) in 5 mL of diethyl ether was quantitatively generated in
situ from its corresponding 1,4-diiodo compousel(1 mmol) and
t-BuLi (4 mmol) at—78 °C (Scheme 1}° The solution was then
heated to reflux in the presence of HMPA and maintained for 1 h.
The reaction was very clean, affording thesilylated silole
derivative4a in 89% isolated yield upon hydrolysis with water.
When the reaction mixture was quenched witfODinstead, the
deuterated compourthD was obtained in 88% isolated yield with
D incorporation more than 98%. Similarly, the dibutyl substituted
1b and the dihexyllc also afforded siloledb and4c in 85% and
86% isolated yields, respectively. Termination of the reaction with
I, afforded 2-iodo-5-trimethylsilyl silol&a in 73% isolated yield.
The structure oba has been determined by single-crystal X-ray
structural analysis (CCDC 631085).

Other types of silylated butadienes were found to undergo similar SiMe,

reactions affording their corresponding siloles (Figure 1). Interest- N Bu SIM% Bu
ingly, the monosilylated butadiertee and 1f could also proceed Lf z '-! SiMe,
this reaction highly selectively to form silole and4f in 82% and N P U @\(
55% isolated yields, respectively. SiMey Pr T

All the above results indicated that 1,4-dilithio-1,3-diertes 1d le 1f
underwent novel intramolecular skeletal rearrangements affording SiMe, Pr
the very useful lithio silole derivative3. _ Pr_

As demonstrated in Figure 2, these readily and efficiently CE?SW"’Z iQSiMez _SiMe,
generated lithiosiloleg can be applied for the synthesis of a variety b Bu 4 Bu L

4d: 86% 4e: 82% 4f: 55%

T Peking University.
+ State Key Laboratory of Organometallic Chemistry. Figure 1.
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Figure 2. One-pot synthesis & via 2aand (a) SiMeCl; (b) SiPRCI; (c)
Mel; (d) COy; (e) cyclohexanone; (f)'4olylCOCI; (g) 4-biphenylCHO.
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observed, which is in sharp contrast to some previous relults.
For example, without HMPA, the intramolecular anionic attack of
9 gavelOin 88% yield!!2In addition, no formation o8 or related
isomers was detected under various experimental conditions in this
work 210 Thus, although path b seems more likely, the mechanism

via path a cannot be ruled out.

Indeed, the in situ generated MeLi was trapped by an aldehyde

forming the alcoholll in 83% isolated yield (eq 22

1) HMPA,
reflux in Et,0, 1h

1a

2) 2eq.4'-BiphenylCHO

r.t, 1h
3) H,0

In conclusion, we report in this paper a new type of lithio siloles,
which can be complementary to those Tamdamaguchi re-
agents-2 These new lithio siloles have the following features: (1)
readily available; (2) more general in terms of substitution patterns

OH
Me

81% 11: 83%

and structural diversity; (3) formed via novel reaction patterns.
Further investigation into the reaction mechanism, scope, and
applications is in progress.
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